Biển Hồ Maar Sediment as a Time Capsule of Past Environmental and Climate Conditions in Vietnam’s Central Highlands Back to the Last Glacial Maximum

Huong NGUYEN-VAN1, Arndt SCHIMMELMANN2, Duong NGUYEN-THUY1, Ingmar UNKEL1, Jan SCHIMMELMANN3, Thai NGUYEN-DINH1, Kelsey DOIRON2, Antti OJALA3, Peter SAUER2, Agnieszka DROBNIAK2, Duong NGUYEN-THUY1, Nguyet NGUYEN-THI-ANH1, Quoc DO-TRONG1, Hong NGUYEN-THI1, Hoan NGUYEN-TRONG1, Nhat NGUYEN-HONG1, Anh Vu-NGOC1, Simon BRASSELL4, Minh SCHIMMELMANN2

1Vietnam National University, Viet Nam, 2Indiana University, United States, 3Christian-Albrechts-Universität zu Kiel, Germany, 4University of Bremen, Germany, 5Geological Survey of Finland, Finland

Global warming enhances atmospheric moisture loading and will likely affect the East-Asian monsoon system across Vietnam. The absence of a long written history in Vietnam creates a reliance on geological archives of past monsoon history and regional paleoenvironmental changes to provide a framework for evaluating current climatic trends. Biển Hồ (14°03'03.5″ N, 108°00'00.2″ E) is a volcanic crater (i.e. maar) lake in Vietnam’s Central Highlands that has been accumulating anoxic, laminated sediments for tens of thousands of years. In field campaigns between 2016-2018, collection of numerous gravity, piston and freeze cores have yielded sediment records extending to a depth of ~15 m in the 21 m deep maar lake. Radiocarbon ages for fossilized terrestrial plant fragments document continuous sedimentation, with sediment at a depth of 6 m corresponding to 12 kyr. Sediments from longer piston cores are currently being dated and will likely yield ages of perhaps 30 kyr, extending beyond the last glacial maximum. Preliminary data from the upper 6 m of sediment document significant changes in chemical composition during the Holocene. For example, the Mn/Fe ratio is lower in the early Holocene, possibly indicating a predominance of dysoxic or acidic conditions, whereas higher values in the late Holocene suggesting less oxygen depletion or alkaline conditions in bottom waters. Low sulfur concentrations coincide with low Mn/Fe ratios. The Rb/Zr ratio is mainly associated with grainsize and follows a coarsening trend downcore. Interpretation of these geochemical data for Biển Hồ sediments will be aided by evidence from biomarker, pollen, and thin-section data, expected for late 2019, and by analyses of deeper sediments from parallel cores. Thus, paleoclimate proxy records from Biển Hồ are expected to provide paleoclimate data at decadal resolution extending back to the last glacial maximum and possibly beyond.